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The exact semiclassical wave function for a tunneling electron, coupled to the degrees of freedom of a host
medium, is constructed. This permits a description of electron dynamics within the barrier. As a specific
application, the result is used to calculate the tunneling amplitude for the electron interacting with the single
vibrational mode of the medium. In agreement both with experiment and with previous numerical study two
regimes of tunneling, i.e., polaron-type vibronic transport and superexchange, are found depending on the
relationship of the Buttikker-Landauer tunneling time and the vibrational period. The evolution of the media
interacting with the tunneling particle is described.

I. Introduction

Charge transfer between electron donor and acceptor,1,2 or
between two metals coupled by a molecular bridge,3 occurs by
quantum tunneling, when the barrier separating initial and final
states is high enough. The tunneling electron moving onto the
molecular bridge can change the bridge degrees of freedom.
The induced change of the bridge state influences the tunneling
particle and modifies its tunneling rate. Therefore, the interaction
with the media can become very important for various charge-
transfer phenomena.

Semiclassical approaches have been extremely important in
application to chemical phenomena as diverse as barrier
tunneling,4 bimolecular collisions,5 inelastic scattering,6 and
electron transfer.7 In this work we develop a semiclassical
picture for description of the tunneling of an electron through
an energy barrier when the barrier contains internal degrees of
freedom that can interact with the electron. This very significant
issue in charge-transfer problems has been examined using many
different and powerful theoretical approaches.2 The semiclassical
trajectory analysis offers several important advantages, including
generality with respect to barrier shape and medium modes as
well as facile and attractive physical interpretation.

Theoretical understanding of interaction effects is based on
the Buttiker-Landauer concept of tunneling timeτ0, i.e., the
time the electron spends under the barrier.8 This time can be
expressed as the duration of motion under the inverted barrier

wherem is the electron mass,L is the barrier length, and∆
estimates the barrier height.9

Let the degrees of freedom of the medium be characterized
by a characteristic frequencyΩM. If the tunneling is relatively
fast, i.e.

the medium dynamics is unable to follow the tunneling particle.
In this situation slow excitations reduce the tunneling rate when
initial and final equilibrium states of the medium differ from
each other10,11because of their nonorthogonality. In the opposite
case where

the medium follows the motion of tunneling particle; with strong
coupling to vibrations, this can lead to formation of a polaron.
In the intermediate regime, whereΩMτ0 ∼ 1, inelastic processes
during tunneling are most probable.8

Usually, electronic tunneling is considered to be faster than
vibronic relaxation because of the difference in electronic and
atom masses.12a Therefore, the dynamic interaction effects
should be weak. However in molecular bridges or wires the
parameters can be different. The tunneling time can be increased
by the applied voltage or by lowering the molecular orbital
energies via bridge substitution, both of which lower the barrier
(see eq 1.1 and Figure 1). Then the current changes significantly
due to inelastic processes.13,14 The slow tunneling regime can
also occur for a sufficiently long molecular bridge. Recent
numerical analysis within the tight binding approach15 shows
that the energetics of tunneling change in that regime. The
tunneling barrier is lowered by media modes since the dynamic
interaction assists tunneling.

The significance of dynamic interaction effects on the
tunneling is the main motivation for this work. The common
analysis of particle tunneling accompanied by the dynamic
interaction with the medium is generally a hard problem, and
most theoretical work evaluating such effects is largely numer-
ical (see, e.g., most recent papers13-19). The development of
analytical theory becomes easier, when the semiclassical ap-
proach is applicable; i.e., the tunneling barrier height exceeds
other energies, characterizing the medium.12b Then the basis
along the tunneling coordinate can be limited to the component
decreasing with respect to this coordinate. However, even within
the semiclassical approach, the analytical theory of dynamic
interaction effects on the tunneling is usually restricted to the
case of electron-vibration interaction.12a,bBelow we extend the
semiclassical analysis to almost any type of electron-medium
interactions with the exception of exchange. In section II we

† Part of the special issue “William H. Miller Festschrift”.
* Address correspondence to any author. E-mail: berlin@chem.nwu.edu,

a-burin@chem.nwu.edu, or ratner@chem.nwu.edu.

τ0 )
xmL

x2∆
(1.1)

ΩMτ0 < 1 (1.2)

ΩMτ0 > 1 (1.3)

2652 J. Phys. Chem. A2001,105,2652-2659

10.1021/jp0037697 CCC: $20.00 © 2001 American Chemical Society
Published on Web 02/10/2001



construct the semiclassical wave function for the tunneling
particle plus medium, exact within the semiclassical approach.
In section III this result is applied to calculate the interaction
effect on the tunneling amplitude and the medium evolution
during tunneling for the simple model of interaction with a single
vibration mode. This model describes the interaction of the
tunneling electron with the most significant optic mode of
vibration. The limits of fast and slow tunneling described by
eqs 1.1 and 1.2 are considered separately. The results derived
in section III for a slow medium (see eq 1.2) are shown to
reproduce earlier theoretical findings12 obtained for the tunneling
of electron interacting with vibrations within the semiclassical
approach. Some conclusions following from our treatment are
formulated and briefly discussed in section IV.

II. Semiclassical Wave Function for a Tunneling Particle
Interacting with the Medium

The tunneling of a particle interacting with the medium can
be described by the Hamiltonian (we setp ) 1 throughout)

Here coordinatex describes the motion of the electron of the
massm, U(x) is the external static potential energy,ĤM describes
the medium degrees of freedom interacting with the moving
electron, andV̂M(x) describes the interaction between the
medium and the electron. We will focus here on the molecular
wire situation, where the potentialU ∼ ∆ forms the barrier for
tunneling from the left lead (x ) 0) to the right lead (x ) L),
and the barrier height is given by the energy∆. The interaction
is selected to equal zero at the beginning of the tunneling
trajectoryVM(0) ) 0. This can be achieved by the appropriate
definition of the medium HamiltonianĤM.

To simplify the problem, we assume that tunneling proceeds
along a single, optimum trajectory, which involves a certain
number of bridge orbitals. In more rigorous study, several other
semiclassical trajectories can be taken into account. They may
interfere with the optimum trajectory constructively or destruc-
tively. However, if a system has no special symmetry (e.g., spin
degeneracy), the contribution of various semiclassical trajectories
to the tunneling amplitude will differ significantly by the

absolute value. As a result, the contribution of the optimum
trajectory will dominate.

Molecular current flow discussions are usually based on
orbital (tight-binding) rather than barrier pictures. In that picture,
one could discuss hole-type and electron-type superexchange
mediated respectively by occupied or empty bridge orbitals.
Such local consideration will, in the simplest situation, be
functionally identical to the local barrier-tunneling picture used
here.

We are interested in the solution of the stationary Schro¨dinger
equation defined by the Hamiltonian (2.1) with eigenenergyE.
To proceed, the tunneling path will be separated into a set of
small segments. The interaction with each segment is taken
x-independent and equal to some characteristic average value.
Then the medium and electron problems can be decoupled
within each segment and the expression for the exact function
can be obtained as a superposition of products of electronic and
medium states. Finally, the continuity requirement in the
semiclassical form will be taken to bind the solutions at various
segments in the limit of zero segment length and infinite number
of segments. This enables us to construct the semiclassical wave
function of the problem under the barrier.

One can separate the total tunneling path (0,L) into N small
segments (0,x1), (x1, x2), ..., (xn-1, L). Assuming that the
potential energyU and interaction with the mediumVM do not
change within each small segment (xi-1, xi), one can replace
them by mean values, i.e.

Then the eigenstates of the stationary Schro¨dinger equation with
energyE, defined by the Hamiltonian (2.1) with interactionsU
andVM replaced according to eq 2.2, can be constructed within
each segment (xi-1, xi). They are the products of the eigenstates
of the media|Ri,m〉 and the semiclassical one-dimensional “plane
waves” with the imaginary momentum, exp((pi,mx), because
the domain under the barrier is classically forbidden. Hence

The imaginary momentumpi,m is defined to ensure that the total
energyE ) Ei,m - pm,E

2 /(2m) satisfies the stationary Schro¨d-
inger equation for the whole system.

The solution within theith segment can be written as

For definiteness, we consider the eigenstate under the barrier
as the continuation of the left lead state mostly occupying the
spacex < 0. Then the wave function should decrease expo-
nentially under the barrier. Within the semiclassical approxima-
tion we will keep only the decreasing term in eq 2.4, which
corresponds to the exponential tail of the semiclassical state

Figure 1. Positions of Fermi levels of leads with respect to the lowest
unoccupied molecular level of wire under applied bias voltageφB. The
voltage drops are assumed to occur at the interfaces between wire and
metals. Therefore, the bias voltage shifts Fermi levels of left and right
leads by+(-)φB/2, respectively, and leaves molecular levels unchanged.

Ĥ ) - 1
2m

‚ d2

dx2
+ U(x) + V̂M(x) + ĤM (2.1)

Ũ(x) ) Ui ) U((xi + xi+1)/2)

V̂M(x) ) VM,i ) VM((xi + xi+1)/2)

xi < x < xi+1 (2.2)

Ψm,E
i ) |Ri,m〉 exp((pm,E

i (x - xi))

(V̂M,i + ĤM)|Ri,m〉 ) Ei,m|Ri,m〉

pm,E
i ) x(2m)(-E + Ui + Ei,m) ∼ x(2m)(-E + ∆) (2.3)

|ΨE
i 〉 ) ∑

m

[cE,m
i- |Ri,m〉 exp(-pm,E

i (x - xi)) +

cE,m
i+ |Ri,m〉 exp(+ pm,E

i (x - xi))] (2.4)

|ΨE
i 〉 ) ∑

m

cE,m
i |Ri,m〉 exp(-pm,E

i (x - xi)) (2.5)
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This assumption corresponds to the standard “noninteracting”
semiclassical approach.20 One can show that it is justified for
our problem, when the tunneling barrier∆ exceeds the
characteristic electron-medium interaction energy. This ap-
proximation is physically reasonable since the tunneling barrier
is usually given by the electronic energy scale∼1-2 eV, while
the interaction with the medium is defined by the reorganization
energy∼0.1-0.5 eV.

To construct the eigenstate under the barrier, we expand the
solutions (2.5) within the whole set ofN segments from the
initial point x ) 0 to the end pointx ) L. One then needs to
makeN binding steps between neighboring segments and then
take the limitN f ∞. The binding conditions are continuity
requirements for eigenfunctions (2.5) between subsequent
segments. The treatment should also demand the continuity of
the derivative between each pair of subsequent segments, but
this is irrelevant since we are using the reduced semiclassical
basis set (2.5) instead of the total set (2.4).

Consider the elementary binding step between segmentsi and
i + 1. The solution in the segmenti is expressed by eq 2.5,
while the solution in the segmenti + 1 can be written as

The continuity between solutions eqs 2.5 and 2.6 atx ) xi+1

requires

Projecting eq 2.7 onto the medium states in segmenti + 1, one
can express the set of coefficientsci+1 in terms of the setci as

It is convenient to relate the intermediate momentum to the value
p0

i that would occur if the medium energy remains the same as
at the beginning of tunneling. Assume that the initial state of
the media is|R0〉 with energyEM0. If the energy of the medium
remains unchanged during the tunneling to the segmenti from
the segment 0, the momentum at the segmenti will be pi,0 )

x(2m)(-E+Ui+EM0) (see eq 2.3). The exponent in eq 2.8 can
be rewritten generally as

The difference of momenta in eq 2.9 describes the dynamic
interaction with the medium during tunneling. It should be small
in comparison with the initial value of the momentumpi,0 since
we have assumed that the interaction energy with the medium
is less than the tunneling barrier∆. Accordingly, one can expand
the momentum difference in eq 2.9 over the energy difference
between initial and intermediate medium states making use of
the momentum definition in eq 2.3

HereVi defines the imaginary speed of tunneling at the segment
i. Since the ratio∆τ ) ∆x/V is the time of tunneling through

segmenti in the inverted barrier, one can rewrite eq 2.8 in terms
of energy changes and tunneling time as

One can express the transform (2.11) as the action of a tunneling
time-dependent operator

where the tunneling timeτi is related to the segment positionxi

by the classical mechanics relation for the inverted barrier

The wave function at some tunneling timeτ corresponding to
the pointx(τ) of the tunneling path can be expressed through
the tunneling (imaginary) time-ordered product of operators
(2.12) acting on the initial state of the medium. In the limit∆τ
f 0 this can be expressed in the integral form as

whereS0(τ) ) ∫0
x(τ)dx x(2m)(-E+U(x)) is the classical under

barrier action calculated neglecting the interaction with the
medium, and the symbolT{...} stands for the (imaginary) time
τ ordered tunneling exponent. Remember that, for convenience,
the interactionV̂M in eqs 2.1 and 2.14 is defined to haveV̂M(0)
) 0. The product of two exponential operators can be expressed
in more compact form as follows

To describe the whole tunneling process, one needs the
eigenfunction (2.14) at the end of the tunneling barrierx ) L,
corresponding to the total tunneling time

We denote the initial state of the medium as|R,0〉 and final
state as|â,L〉. The matrix element for the tunneling process
accompanied by the transition from the state|R〉 to the state
|â〉 can be expressed as

Here B0 is a characteristic preexponent for the semiclassical
tunneling matrix element between right and left electronic states,
if the bridge is considered as a perturbation (see, e.g., ref 11).
Calculation of B0 is outside of a scope of a semiclassical

cE,m
i+1 ) exp(-∆S0) ∑

a

〈Ri+1,m|Ri,a〉 exp(-∆τi(Ei,a - EM0))cE,a
i

(2.11a)

∆S0 ) pi,0∆x

∆τi ) ∆x
Vi

(2.11b)

exp(-∆S0 + ∆τiEM0) exp[-(V̂M(τi) + ĤM)∆τi] (2.12)

τi ) ∫0

xi x2m dx

x-E + U(x) + EM0

(2.13)

ΨM(x(τ)) ) exp(-S0(τ))T-1{exp(-∫0

τ
dτ′ (V̂M(τ′) +

ĤM))} exp(ĤMτ)ΨM(x)0) (2.14)

ΨM(x(τ)) ) exp(-S0(τ))T-1 ×
exp{-∫0

τ
dτ′V̂M(τ′,-i(τ′-τ))}ΨM(x)0)

VM(τ′t) ) exp(itHM) VM(τ′) exp(-itHM) (2.15)

τ0 ) ∫0

L x2m dx

x-E + U(x) + EM0

(2.16)

tRâ ) B0 exp(-S0(τ0))〈â,L|Â|R,0〉

Â ) T-1 exp{-∫0

τ0dτ′ V̂M(τ′,-i(τ′-τ0))} (2.17)

|ΨE
i+1〉 ) ∑

m

cE,m
i+1|Ri+1,m〉 exp(-pm,E

i+1(x - xi+1)) (2.6)

∑
m

cE,m
i |Ri,m〉 exp(-pm,E

i (xi+1 - xi)) ) ∑
m

cE,m
i+1|Ri+1,m〉 (2.7)

cE,m
i+1 ) ∑

a

〈Ri+1,m|Ri,a〉 exp(-pa,E
i (xi+1 - xi))cE,a

i (2.8)

exp(-pi,0∆x - (pa,E
i - pi,0)∆x)

∆x ) xi+1 - xi (2.9)

pa,E
i - pi,0 ≈ 2

Vi
(Ei,a - EM0)

Vi )
pi,0

m
(2.10)
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approach. The operatorÂ describes the evolution of the medium
during tunneling.

Evaluation of the matrix element (2.17) is easier, when the
same basis set is used for initial and final states. The medium
eigenstate|â,L〉 at the end of the tunneling path can be expressed
in terms of the corresponding state|â,0〉 at the beginning of
the tunneling path using the unitary operator of adiabatic transfer
as

For the system without degeneracy, this operator can be defined
through the time ordered exponent of the perturbative interaction
term:

Then the tunneling matrix element eq 2.17 within the basis of
final medium states|â〉 ≡ |â,L〉 is given by

Elastic tunneling occurs without change of the medium state
with the conservation of the indexR. Assuming initial thermal
equilibrium, the elastic tunneling amplitude taking the interaction
with the medium into account becomes

where averaging is done over the Boltzmann distribution of
medium states for temperatureT. For both elastic and inelastic
transfer, one can make use of the Fermi Golden rule and eq
2.20 to compute the charge-transfer tunneling rateW(ε) between
initial and final particle states with energy differenceε, which
is dissipated to the medium excitations (see, e.g., ref 11). As a
result, we get

Here the HamiltoniansĤi andĤf describe the medium properties
at the beginning and the end of trajectory, respectively,

The energiesER and Ẽâ are the energies of initial and final
Hamiltonian eigenstatesR and â, and Â was defined by the
second line in eq 2.17.

The exact semiclassical expression for tunneling matrix
elements, given by eqs 2.20 and 2.21 are the main results of
this section. The rest of the paper is devoted to the application

of the formalism to the problem of a tunneling electron in a
molecular wire, interacting with a vibrational mode.

III. Interaction of a Tunneling Electron with a Vibration
Mode

We will apply the results of the previous section to the model
of electron tunneling through a long molecule, connecting two
metal leads under applied bias voltage.3 The interacting medium
modes will be limited, in this example, to a single vibration.
Usually the Fermi levels of metals are located within the
HOMO/LUMO gap of the bridge21 and the energy difference
between the Fermi energy and the lowest unoccupied molecular
level forms the tunneling barrier (see Figure 1).22 The height
of this barrier differs for different metals and molecules ranging
from several eV23 to almost vanishing in carbon nanotubes.24,25

We consider the barrier∆ sufficiently large to apply a
semiclassical formalism.

In a symmetric junction, the bias voltageφB shifts Fermi
levels of right and left leads byφB/2 up and down, respectively.
The applied voltage is considered to be so small that the density
of states at the Fermi levels does not change when the Fermi
level is shifted byφB/2. Assume, following the consideration
of ref 21, that the drop of potential mostly occurs at the interface
between the molecule and metals (see Figure 1). Then the
tunneling barrier is controlled by the applied voltage and changes
as

Accordingly, the tunneling time eq 1.1 increases with increasing
φB and the tunneling regime can be changed from fast (1.2) to
slow (1.3) at sufficiently largeφB.

Usually, a tight binding Hu¨ckel-type model is used to consider
the electron transport through molecular wires occurring by
tunneling between separated atomic orbitals.14-16,21,24However,
covalent networks of most bridges seem strong enough to
provide quasi-continuous charge motion rather than a set of
jumps between discrete points.23,24

Generally, the tight-binding model is appropriate when the
overlap of the atomic orbitals is small. The effective mass of
the moving charge scales as the inverse tunneling matrix element
between neighboring orbitals (see, e.g., ref 9) and should be
large in comparison with the electronic mass if the tight-binding
model is appropriate. However the bare electronic mass can be
used to treat the data of ref 23 for the (CH2)n molecular wire.
Accordingly, the continuous media model may be more ap-
propriate than the tight-binding one for that problem (which is
sensible, since polyalkanes have very large bandwidths).26

Note that even for a wide-gap semiconductor such as a DNA
chain, the effective mass of the carrier (hole) seems to be close
to the standard electronic mass, which suggests the possible
relevance of a continuous model even there.27 Thus, the
continuous model can be adequate to treat the electron transport
through the molecular wire.

To simplify the effect of electron-vibration interaction, we
keep only one significant optic mode. The ability to describe
the most significant aspect of the complex electron-vibration
interaction using a single relevant optical mode has been
suggested by Zerbi et al.28 In particular, this assumption is
sufficient to describe the emission spectrum (see discussion in
ref 29 and references therein).

The opposite assumption of the significance of acoustic
vibrations has been used in ref 12. There it has been motivated

|â,L〉 ) Π̂|â,0〉

〈â,L| ) 〈â,0|Π̂-1 (2.18)

Π̂ ) T exp{i∫-∞

0
dt V̂(τ0,t)} (2.19a)

V̂(τ,t) ) exp(iHMt)V̂(τ) exp(-iHMt) (2.19b)

tRâ ) B0 exp(-S0(τ))〈â|Π-1T exp{-∫0

τ0dτ ′V̂M(τ′,-i(τ′-

τ0))}|R〉 (2.20)

tcoh ) B0 exp(-S0(τ))〈Π-1T exp{-∫0

τ0dτ′V̂M(τ′,τ′-τ)}〉
(2.21)

W(ε) ) 〈∑
â

tRâ
2δ(Ẽâ - ER + ε)〉

)
B0

2 exp(-2S0(τ0))

2π ∫-∞

+∞
dt eiεt〈Â+ exp(iĤf t)Â ×

exp(-iĤit)〉 (2.22)

Ĥi ) ĤM

Ĥf ) ĤM + V̂M(τ0) (2.23)

∆(φB) ) ∆(0) -
φB

2
(3.1)
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by the smaller amplitude of vibrations for optic modes than for
acoustic ones. However, charge should interact more strongly
with the polarized optic mode than with the quasi-neutral
acoustic vibration. Additionally, the dynamic interaction be-
comes stronger, when the tunneling time equation (1.1) is closer
to the vibration period. Certainly, the tunneling time of a light
electron is closer to the period of optical vibrations than of
acoustic vibrations.

Accurate theory should of course treat all interactions. The
purpose of this section is to demonstrate the main effect of
vibrations on the tunneling, which is clear within the framework
of the single mode model. The generalization to interaction with
many modes is straightforward.30

The characteristic energy of the relevant mode can be
estimated aspΩ ∼ 0.2 eV (see, e.g., refs 27 and 28). This mode
can be, for instance, the most strongly coupled C-H or C-C
vibrations.31 The vibrations can be described by the Hamiltonian

wherep̂ and û are the momentum and displacement operators
andM is the effective mass of the vibration.

We take the electron-vibration interaction in the standard
form, which linearly depends on the displacementû, i.e.

where γ(τ) is the interaction constant, different at different
positions (or tunneling times) of the moving electron. This
approach is standard for the electron-vibration interaction.30,32

It corresponds to the expansion in the lowest order of the small
vibration amplitudeu. Expressions (2.21) and (2.22) can be
evaluated analytically for the interaction (3.3), while the problem
becomes more complicated for the bilinear interaction.

The dependence of the interaction constant on the tunneling
timeτ describes its coordinate dependence (see eq 2.13, showing
the relation between coordinate and tunneling time). It is
convenient to express the interaction constant through the
corresponding reorganization energyER (oscillator equilibrium
energy change due to the perturbation; see, e.g., refs 1, 2, 7,
and 33)

For estimates we will use the reorganization energy typical for
organic molecules,ER ∼ 0.4 eV.1,7,33

When an electron enters or leaves the bridge, its interaction
with the molecular bridge modes almost vanishes and we can
put

whereτ0 is the total tunneling time defined in eq 2.16. Since
the initial and final basis of medium states are the same, the
adiabatic operator equation (2.19) is unity and can be omitted
in the definition of the average elastic tunneling amplitude
equation (2.21). For the case of electron transfer in donor-

bridge-acceptor systems, the interaction constant is generally
different at the beginning and the end of the tunneling (γ(τ0) *
0). Then one can construct the adiabatic operator, taking into
account that the change of eigenstates of the medium Hamil-
tonian equation (3.4) during tunneling can be described as a
shift of the equilibrium position toueq(τ). Accordingly, the
change of vibrational states during tunneling from the donor to
the acceptor can be represented by the coordinate shift operator
as

To compute the elastic tunneling amplitude equation (2.20),
one needs to evaluate the tunneling time dependent interaction
operator equation (2.15). Making use of the second quantization
representation of the oscillator displacement,34 we get

where operatorsb+ andb describe the creation or annihilation
of a vibrational excitation. Since for the case of interest
(molecular wire) eq 3.5 holds, one can ignore the effect of the
adiabatic transfer operator. Then the elastic tunneling amplitude
can be evaluated by making use of the Wick theorem for Bose
operators20 as

In the static limit for the vibrations (Ω ) 0), this result is
equivalent to the semiclassical approach of ref 12a.

Note that the proposed formalism also allows the exact
treatment of a harmonic donor-bridge-acceptor system, where
the operatorΠ̂ is of major importance because of reorganization.
The difference with eq 3.7 is the presence of the additional
exponential factors. It can be shown that at low frequency this
contribution dominates.7,34 At low temperature this donor/
acceptor coupling difference reduces the tunneling amplitude
by the Franck-Condon factor exp(-γ2/(4MΩ3)) in exact
agreement with many previous studies (see, e.g., refs 1, 2, 10,
11, and 35). This factor represents the overlap integral between
the initial and final ground states of the vibrational medium
and solvent, which differ by the shift of the oscillator center by
ueq(τ0) (eq 3.4). Therefore, the nonorthogonality of medium
states at the beginning and the end of tunneling can reduce the
elastic tunneling amplitude and charge transfer rate (donor-
bridge-acceptor systems). In sharp distinction for the molecular
wires, initial and final medium vibrational states are the same,
since charge is initially outside of the molecule and finally leaves
it.

ĤM ) p̂2

2M
+ MΩ2 û2

2
(3.2)

V̂M(τ) ) -γ(τ)û (3.3)

ER(τ) ) 1
2

γ2

MΩ2

MΩ2u
2

2
- γ(τ)u ) -ER(τ) + MΩ2

(u - ueq(τ))2

2

ueq(τ) )
γ(τ)

MΩ2
(3.4)

γ(0) ) γ(τ0) ) 0 (3.5)

Π̂(τ) ) exp( γ(τ)

MΩ2
∂u) (3.5a)

V̂M(τ′) ) -γ(τ′)u ) -γ(τ′)x 1
2MΩ

(b+ + b)

V̂M(τ′,-i(τ′-τ0)) ) -γ(τ′) u(-i(τ′-τ0)) )

-γ(τ′)x 1
2MΩ

(b+eΩ(τ′-τ0) + be-Ω(τ′-τ0))

Π̂-1(τ0) ) exp(-
γ(τ0)

MΩ2
∂u) ) exp(-

γ(τ0)

MΩ2xMΩ
2

(b - b+))
(3.6)

tcoh ) B0 exp(-S0(τ)) exp[ 1
2MΩ∫0

τ0dτ′ γ(τ′) ∫τ′

τ0dτ′′ ×

γ(τ′′) (eΩ(τ′-τ′′)(1 + νΩ) + νΩe-Ω(τ′-τ′′))]
νΩ ) 1

exp(pΩ
kBT) - 1

(3.7)
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Returning to the wire situation, for the optical modepΩ ∼
0.2 eV, so one can neglect the effect of the temperature and set
the population factorνΩ ) 0 at room temperature. Making use
of the boundary conditions eq 3.5, one can expand the interaction
constant in a Fourier series. This gives

If γ(τ) is positive (or negative) during the whole tunneling path,
then the componentsγn with n > 1 will be smaller in
comparison toγ1 due to the oscillations of the integral in eq
3.8. This can hold for ionic vibrations perpendicular to the
molecular axes, since negatively charged electrons attract
positive ions and repel negative ions. Therefore, we consider
the tunneling exponent in eq 3.7 by keeping only one term in
eq 3.8, namely

The effect of higher harmonics can also be evaluated analyti-
cally; this does not change the qualitative behavior but makes
the analysis much more complicated.

To describe the effect of interaction, we calculate the
tunneling amplitude eq 2.20 and the average energy of the
tunneling particle along the tunneling path.

Making use of the definition eq 3.9, one can calculate the
tunneling amplitude eq 3.7. As a consequence, we get

whereER is the maximum reorganization energy (see eq 3.4)
in the middle of the tunneling path.

In the slow tunneling regime eq 1.3 the correction to the
tunneling exponent is proportional to the tunneling time. The
tunneling amplitude (3.10) can be approximated by

The result (3.11) can be interpreted by assuming that the
vibrational mode remains in the ground state during the whole
tunneling path, thus reducing the tunneling barrier by the
reorganization energy equation (3.4). Accordingly, the total
tunneling action should be redefined as

leading exactly to the result eq 3.11. Note that in the limit of
the very fast modeΩ f ∞, the correction to the tunneling
exponent in eq 3.12 vanishes asΩ-2. It is understandable that
stiff oscillations will not have any effect.

In the fast tunneling regime eq (1.2) the correction to the
tunneling action vanishes asγ0

2 τ0
2/(π2MΩ), whenτ0 f 0. In

accordance with ref 11 the medium is too slow to follow the
tunneling electron and remains in the same quantum state during
the whole process. The reduction of the tunneling amplitude
due to the difference of the vibrational states before and after

tunneling10,11 does not occur for the molecular wire model
because these medium states are the same.

It follows from eq 3.7 and eq 3.10 that the vibrational
interaction always enhances the tunneling amplitude. The same
conclusion follows from a theoretical study of Sumetskii12b if
the vibrational interaction exists only within the region under
the barrier. This enhancement is stronger for slow tunneling eq
(1.3). The dependence of the tunneling enhancement factor on
the tunneling time and applied voltage is shown in Figure 2 for
bridge parameters reasonable for organic molecular wires. As
can be seen from this figure, the enhancement can reach several
orders of magnitude. Note that the transition rate (2.22) scales
as the squared tunneling amplitude, so the observable effect can
really be strong.21 If, however, vibrations are assumed to affect
only the inelastic processes, the electron-vibration interaction
can decrease the transition rate, as has been found by Persson
and Baratoff.36 Nevertheless, our results show that the enhance-
ment of tunneling rate due to the electron-vibration interaction
dominates (cf. eq 3.10), at least in the case where the
semiclassical approach is valid. The latter condition is not
satisfied in the situation of resonant tunneling studied by Person
and Baratoff.36

Generally, the current through a molecular wire can be
described in terms of the charge-transfer rate;24 cf. eq 2.22. The
elastic tunneling amplitude provides a reasonable qualitative
understanding of the transport phenomenon.11 In particular, at

γ(τ) ) ∑
n)1

∞

γn sin(πτn

τ0
)

γn ) 2
τ0
∫0

τ0dτ γ(τ) sin(nπτ
τ0

) (3.8)

γ(τ) ) γ1 sin(πτ
τ0

) (3.9)

t0,med∝ B0 exp(-S0(τ0)) ×

exp[ ER

pΩ( Ωτ0

2(1 + π2

(Ωτ0)
2)

+ ( π
Ωτ0

)2 1 + exp(-Ωτ0)

(1 + π2

(Ωτ0)
2)2 )] (3.10)

t0,med∝ B0 exp(-S0(τ0) + ERτ0/2) (3.11)

S) S0 - ∫0

τ0dτ ER(τ) (3.12)

Figure 2. Dependence of the vibrational enhancementt0,med/[B0

exp(-S0(τ0)] of the tunneling amplitude on (A) tunneling time and (B)
applied voltage. The parameters are rectangular barrier of the height∆
) 3 eV, lengthL ) 5 nm, medium mode energypΩ ) 0.2 eV,
reorganization energyER ) 0.4 eV.

Tunneling of Electrons Interacting with Media J. Phys. Chem. A, Vol. 105, No. 12, 20012657



low temperature and at low applied voltage the tunneling
transition occurs directly between Fermi levels of right and left
leads and the elastic tunneling amplitude defines the relevant
matrix element for the tunneling process.24 Detailed studies of
the transfer rate given by (2.22) will be published elsewhere.

The general expression eq 2.15 describes the semiclassical
medium wave function depending on the positionx < L
(tunneling timeτ < τ0 passed from the beginning of the process).
This wave function contains detailed information about the
medium state and therefore how the medium assists tunneling.
Below we calculate this function for the single mode problem
under consideration and study mean energies for the medium
and tunneling particles, to describe the energy redistribution
during tunneling. Initially, the medium is in the ground state.
Then, according to eq 2.15, the medium wave function corre-
sponding to the tunneling timeτ can be expressed as

Here |0〉 is the ground state of the vibrational mode and the
operatorV̂M is defined by eq 3.6. Since operators A and B with
a constant commutator satisfy the equality, eAeB ) eBeAe[A,B] ,
while the ground state has the propertyb|0〉 ) 0, the expression
for the wave function (3.13) can be rewritten as

The above result enables us to express the mean energy
change of the vibrational mode during tunneling as

Equation 3.15, in turn, defines the change of the tunneling barrier
due to the dynamic medium response. Straightforward calcula-
tion with the wave function defined by eq 3.14 yields

The tunneling barrier change with time is shown in Figure 3
for slow and fast tunneling regimes. The results are in good
agreement with the numerical study of refs 16 and 18. For the
fast tunneling regime whereΩτ0 ) 0.1, changes in energy are
very weak since the vibration does not have enough time to
respond to the tunneling charge (the electron is never localized
on the bridge). In the slow tunneling regime and forΩτ0 ) 10,
the energy barrier clearly follows the reorganization energy.
Some deviation can be understood as the effect of a nonadiabatic
switch on the interaction atτ ) 0, because eq 3.9 suggests the

sharp turn-on of the tunneling barrier. For smoother behavior
of the coupling constant the shift in tunneling barrier will follow
the reorganization energy much more closely.

IV. Conclusions and Discussion

We have constructed the semiclassical wave function for a
tunneling electron interacting with the medium. This wave
function permits us to describe the evolution of the medium
degrees of freedom caused by the tunneling electron.

Semiclassical expressions for matrix elements coupling initial
and final states equation (2.17) and for the medium evolution
during tunneling look similar to the standard real time expression
for the evolution of the medium eigenstate. However, this
similarity is not complete: Direct change from real time to
imaginary does not lead to our results. Perhaps it is possible to
suggest an easier alternative derivation (and improvement) of
our result based on the imaginary time approach to the tunneling
problem. To our knowledge this has not been done yet. Using
the semiclassical matrix elements for medium transitions, we
obtained the charge-transfer rate, for the processes, accompanied
by the energy exchange with the media (dissipation).

The case of tunneling through a molecular wire has been
considered in detail. The model of dynamic interaction of the
tunneling electron with a single vibrational mode has been used.
We have calculated the medium effect on the elastic tunneling
amplitude. As opposed to the donor/acceptor charge transfer3,33

or spin-boson problem35 where vibronic descriptions of initial
and final states differ, here the interaction with bridge vibrations
enhances charge tunneling.36 Our analysis shows that the most
significant vibrational effect occurs in the slow tunneling regime,
when the tunneling time exceeds the vibrational period (eq 1.2).
In this regime the tunneling barrier can be substantially reduced,
and the tunneling rate can increase by several orders of
magnitude. The reduction of the tunneling barrier has been
identified as the bridge reorganization energy. This is the
adiabatic change of medium energy, when it follows the
tunneling electron. Our results qualitatively reproduced the
numerical studies of refs 16 and 18.

The medium wave function has been derived. The slow
tunneling regime is shown to represent the polaron cloud that
adiabatically follows the tunneling electron. This case can then

|M,τ〉 )

T exp{-∫
0

τ
dτ ′V̂M(τ′,τ′-τ)}|0〉

x〈0|(T exp{- ∫
0

τ
dτ ′V̂M(τ′,τ′-τ)})+T exp{-∫

0

τ
dτ′ V̂M(τ′,τ′-τ)}|0〉

(3.13)

|M,τ〉 ) exp(-
η2(τ)

2
+ η(τ)b+)|0〉

η(τ) ) - x 1
2MΩ ∫0

τ
dτ′ γ(τ′) eΩ(τ′-τ)

) - xER

Ω
1

1 + ( π
Ωτ0

)2[ π
Ωτ0

(cos(πτ
τ0

) - e-Ωτ) -

sin(πτ
τ0

)] (3.14)

∆Ev(τ) ) 〈M,τ| p̂2

2M
+ MΩ2û

2

2
- γ(τ)û - pΩ/2|M,τ〉 (3.15)

∆Ev(τ) ) pΩ|η(τ)|2 - 2γ(τ)x 1
2MΩ

η(τ) (3.16)

Figure 3. Dependence of the tunneling barrier reduction on the position
of the electron under the rectangular barrier for fast (solid line),
intermediate (dashed line) and slow (dash-dotted line) tunneling
regimes. The tunneling barrier and the applied voltage are taken to be
∆ ) 2 eV and 2 V, respectively. Values of other parameters are given
in the text.
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be addressed as thepolaron tunneling regime in accordance
with the suggestion of ref 18. In the opposite case of fast
tunneling, the medium excitations cannot follow the tunneling
electron. This case corresponds to thesuperexchangeregime
of independent particle tunneling.37

Our results can be applied to more general problems than
the modeling study of section III. Straightforward generalization
of the analytical expressions for the tunneling amplitude and
the charge-transfer rate can also be made for the linear
interaction with an arbitrary number of vibrations. Generalization
can be made for the bilinear electron-vibration interaction. The
expression for tunneling rate permits the direct analysis of the
energy dissipation occurring during tunneling.38 In addition to
vibrations, the interaction of tunneling electrons with conduction
electrons and the corresponding electronic friction effect for
molecular wires can be addressed within a reasonable bosoniza-
tion procedure for electron/hole pairs.10 This work is currently
in progress.
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