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The exact semiclassical wave function for a tunneling electron, coupled to the degrees of freedom of a host
medium, is constructed. This permits a description of electron dynamics within the barrier. As a specific
application, the result is used to calculate the tunneling amplitude for the electron interacting with the single
vibrational mode of the medium. In agreement both with experiment and with previous numerical study two
regimes of tunneling, i.e., polaron-type vibronic transport and superexchange, are found depending on the
relationship of the ButtikkerLandauer tunneling time and the vibrational period. The evolution of the media
interacting with the tunneling particle is described.

I. Introduction the medium dynamics is unable to follow the tunneling particle.
In this situation slow excitations reduce the tunneling rate when
initial and final equilibrium states of the medium differ from
each othéf11because of their nonorthogonality. In the opposite
case where

Charge transfer between electron donor and accégtor,
between two metals coupled by a molecular briéigecurs by
guantum tunneling, when the barrier separating initial and final
states is high enough. The tunneling electron moving onto the
molecular bridge can change the bridge degrees of freedom.
The induced change of the bridge state influences the tunneling
particle and modifies its tunneling rate. Therefore, the interaction
with the media can become very important for various charge- the medium follows the motion of tunneling particle; with strong
transfer phenomena. coupling to vibrations, this can lead to formation of a polaron.

Semiclassical approaches have been extremely important inln the intermediate regime, whe&zo ~ 1, inelastic processes
application to chemical phenomena as diverse as barrierduring tunneling are most probalfle.
tunneling* bimolecular collision$, inelastic scatterin§,and Usually, electronic tunneling is considered to be faster than
electron transfef.In this work we develop a semiclassical Vibronic relaxation because of the difference in electronic and
picture for description of the tunneling of an electron through atom masse¥? Therefore, the dynamic interaction effects
an energy barrier when the barrier contains internal degrees ofshould be weak. However in molecular bridges or wires the
freedom that can interact with the electron. This very significant parameters can be different. The tunneling time can be increased
issue in charge-transfer problems has been examined using manpy the applied voltage or by lowering the molecular orbital
different and powerful theoretical approacR@he semiclassical energies via bridge substitution, both of which lower the barrier
trajectory analysis offers several important advantages, including(see eq 1.1 and Figure 1). Then the current changes significantly
generality with respect to barrier shape and medium modes asdue to inelastic process&s!* The slow tunneling regime can
well as facile and attractive physical interpretation. also occur for a sufficiently long molecular bridge. Recent

Theoretical understanding of interaction effects is based on numerical analysis within the tight binding approtshows
the Buttiker-Landauer concept of tunneling time, i.e., the that the energetics of tunneling change in that regime. The
time the electron spends under the barfighis time can be tunneling barrier is lowered by media modes since the dynamic
expressed as the duration of motion under the inverted barrierinteraction assists tunneling.

The significance of dynamic interaction effects on the

Q7> 1 (1.3)

JmL tunneling is the main motivation for this work. The common
e (1.1) analysis of particle tunneling accompanied by the dynamic
V2A interaction with the medium is generally a hard problem, and
most theoretical work evaluating such effects is largely numer-
wherem is the electron masg, is the barrier length, and ical (see, e.g., most recent papérs®). The development of
estimates the barrier height. analytical theory becomes easier, when the semiclassical ap-

Let the degrees of freedom of the medium be characterized proach is applicable; i.e., the tunneling barrier height exceeds
by a characteristic frequendyw. If the tunneling is relatively  other energies, characterizing the medi#Then the basis
fast, i.e. along the tunneling coordinate can be limited to the component

decreasing with respect to this coordinate. However, even within
Quto <1 (1.2) the semiclassical approach, the analytical theory of dynamic
interaction effects on the tunneling is usually restricted to the

" Part of the special issue “William H. Miller Festschrift” case of electroavibration interactior22PBelow we extend the
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Molecular wire unoccupied level absolute value. As a result, the contribution of the optimum
—————————— trajectory will dominate.

A(0y) tunneling barrier Molecular current flow discussions are usually based on

_ orbital (tight-binding) rather than barrier pictures. In that picture,

one could discuss hole-type and electron-type superexchange

6g/2 . - . - .
i mediated respectively by occupied or empty bridge orbitals.
0p/2 Such local consideration will, in the simplest situation, be
Fermi Levels —_ functionally identical to the local barrier-tunneling picture used
here.

We are interested in the solution of the stationary Sdimger
equation defined by the Hamiltonian (2.1) with eigenendggy
To proceed, the tunneling path will be separated into a set of
small segments. The interaction with each segment is taken
x-independent and equal to some characteristic average value.
Then the medium and electron problems can be decoupled

Molecular wire

Cathode Anode within each segment and the expression for the exact function
Figure 1. Positions of Fermi levels of leads with respect to the lowest can be obtained as a superposition of products of electronic and
unoccupied molecular level of wire under applied bias voliagerhe medium states. Finally, the continuity requirement in the

VOItta?e ?_rhOpS fare atisug\ed toI?ccur ﬁf[f:h?:inte_rffcesl beft‘l"’?te“ V(‘j’ir‘? ﬁp%emiclassical form will be taken to bind the solutions at various

metals. Therefore, the bias voltage shifts Fermi levels of left and ri . - e

leads byt+(—)¢e/2, respectively, ar?d leaves molecular levels unchangged. segments in the _“m't of zero segment length and 'n_f'n'te number
of segments. This enables us to construct the semiclassical wave

function of the problem under the barrier.

One can separate the total tunneling path_jdnto N small
segments (0x1), (X1, X2), ..., ®-1, L). Assuming that the
potential energy and interaction with the mediuvy do not
change within each small segmert-{, x), one can replace
them by mean values, i.e.

construct the semiclassical wave function for the tunneling
particle plus medium, exact within the semiclassical approach.
In section Il this result is applied to calculate the interaction
effect on the tunneling amplitude and the medium evolution
during tunneling for the simple model of interaction with a single
vibration mode. This model describes the interaction of the

tunneling electron with the most significant optic mode of s = 1], — Ly

vibration. The limits of fast and slow tunneling described by U0 = Ui = U0 +%.0)/2)

egs 1.1 and 1.2 are considered separately. The results derived Vy(X) = Vi = V(% + % )/2)

in section Il for a slow medium (see eq 1.2) are shown to

reproduce earlier theoretical findifigebtained for the tunneling % <X <Xy (2.2)

of electron interacting with vibrations within the semiclassical ) ) ) )
approach. Some conclusions following from our treatment are Then the eigenstates of the stationary Sdhmger equation with

andVy replaced according to eq 2.2, can be constructed within

each segmenk(_1, x;). They are the products of the eigenstates
of the medigo; mCand the semiclassical one-dimensional “plane
waves” with the imaginary momentum, exgag wx), because

The tunneling of a particle interacting with the medium can the domain under the barrier is classically forbidden. Hence
be described by the Hamiltonian (we $et= 1 throughout)

Il. Semiclassical Wave Function for a Tunneling Particle
Interacting with the Medium

2 im,E = |ai,m|:bxp(:l:pim£(x = %))
1d

A=—5- G TuR T W +HA, (1) (Vi T A1t 0= E; 0t 0

_ | | Prme=(@M(-E+ U+ E )~ VEM(-E+4)  (2.3)
Here coordinatex describes the motion of the electron of the
massm, U(x) is the external static potential enerdy describes The imaginary momentum m is defined to ensure that the total
the medium degrees of freedom interacting with the moving energyE = En — pﬁlE/(Zm) satisfies the stationary Schito
electron, andVu(x) describes the interaction between the inger equation for the whole system.
medium and the electron. We will focus here on the molecular  The solution within théth segment can be written as
wire situation, where the potentibl ~ A forms the barrier for

tunneling from the left leadx(= 0) to the right leadX = L), W= z[ciE”mmi’mbep(—pimvE(x - X)) +

and the barrier height is given by the energyThe interaction m

is selected to equal zero at the beginning of the tunneling e oy exp@ ph (X — x))] (2.4
trajectoryViw(0) = 0. This can be achieved by the appropriate el -BXPCH Proe( = X))] (24)
definition of the medium Hamiltoniahiy. For definiteness, we consider the eigenstate under the barrier

To simplify the problem, we assume that tunneling proceeds as the continuation of the left lead state mostly occupying the
along a single, optimum trajectory, which involves a certain spacex < 0. Then the wave function should decrease expo-
number of bridge orbitals. In more rigorous study, several other nentially under the barrier. Within the semiclassical approxima-
semiclassical trajectories can be taken into account. They maytion we will keep only the decreasing term in eq 2.4, which
interfere with the optimum trajectory constructively or destruc- corresponds to the exponential tail of the semiclassical state
tively. However, if a system has no special symmetry (e.g., spin _ _ _
degeneracy), the contribution of various semiclassical trajectories |Wel= ZCIE,mlai,m[EXp(_plm,E(x = X)) (2.5)
to the tunneling amplitude will differ significantly by the m
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This assumption corresponds to the standard “noninteracting” segment in the inverted barrier, one can rewrite eq 2.8 in terms
semiclassical approa@d.One can show that it is justified for ~ of energy changes and tunneling time as
our problem, when the tunneling barriex exceeds the ) ,
characteristic electreamedium interaction energy. This ap- C'Efnlq= exp—AS) ZE:bti+1‘m|aiyabep(—Ari(Eiya - EMO))CIE,a
proximation is physically reasonable since the tunneling barrier a

is usually given by the electronic energy scale—2 eV, while (2.112)
the interaction with the medium is defined by the reorganization A = p pAX
energy~0.1-0.5 eV. Ax

To construct the eigenstate under the barrier, we expand the Aty =— (2.11b)
solutions (2.5) within the whole set & segments from the Y

initial point x = 0 to the end poink = L. One then needs to
makeN binding steps between neighboring segments and then
take the limitN — . The binding conditions are continuity
requirements for eigenfunctions (2.5) between subsequentgyyAS + AZE. ) exol—(V. () + H. AT 212
segments. The treatment should also demand the continuity of PCAS %iEwo) eXPE(V(®) AT (2.12)
the derivative between each pair of subsequent segments, bufyhere the tunneling time is related to the segment positign

this is irrelevant since we are using the reduced semiclassicalyy the classical mechanics relation for the inverted barrier
basis set (2.5) instead of the total set (2.4).

One can express the transform (2.11) as the action of a tunneling
time-dependent operator

Consider the elementary binding step between segmant$ X v2m dx
i + 1. The solution in the segmentis expressed by eq 2.5, r= . (2.13)
while the solution in the segmentt+ 1 can be written as «/_E +UX) + Eyo
i+1 i+1) ity The wave function at some tunneling timeorresponding to
We b= ;CE'”"OL'“'F”EEXM Pme(X —%42)) - (2:6) the pointx(z) of the tunneling path can be expressed through
the tunneling (imaginary) time-ordered product of operators

The continuity between solutions eqs 2.5 and 2.& at Xi+1 (2.12) acting on the initial state of the medium. In the lirkit
requires — 0 this can be expressed in the integral form as

> Cenl®nBXPECPeCiis = ¥) = Y Cenltiain (7)) W (x(r) = exp ST Hexpl [de’ (Uyy(e) +

o _ o A} expEHyn)Wy(x=0) (2.14)
Projecting eq 2.7 onto the medium states in segment, one

can express the set of coefficienis?! in terms of the set' as whereS(r) = f(x)(’)dx J(2m)(—E+U(X)) is the classical under
i1 i i barrier action calculated neglecting the interaction with the
Cem ™ zmi+1,m|ai,a|:EXp(_pa,E(Xi+1 —X))Cea (2.8) medium, and the symbd¥ ..} stands for the (imaginary) time
a 7 ordered tunneling exponent. Remember that, for convenience,
the interactiorvy in eqgs 2.1 and 2.14 is defined to havg(0)

Itis convenient to relate the intermediate momentum to the value - H q P o b q
p, that would occur if the medium energy remains the same as . 0. The product of two exponential operators can be expresse

at the beginning of tunneling. Assume that the initial state of in more compact form as follows
the media igaOwith energyEwo. If the energy of the medium _ - 1
remains unchanged during the tunneling to the seginieom Py(X(@)) = expSO)T ~ x

the segment 0, the momentum at the segmaenitl be pjo = exp( —j:d‘r'\A/M(T',—i(T'—‘C))}‘PM(XZO)
\/(Zm)(—E+Ui+EMO) (see eq 2.3). The exponent in eq 2.8 can
be rewritten generally as Vu(T't) = exp(itHy,) Vyu(7') exp(=itH,,)  (2.15)
exp=p; pAX — (P;,E — PoAX) To describe the whole tunneling process, one needs the
eigenfunction (2.14) at the end of the tunneling barxier L,
AX= X4y — X (2.9) corresponding to the total tunneling time

The difference of momenta in eq 2.9 describes the dynamic L V2m dx

interaction with the medium during tunneling. It should be small = f; (2.16)
in comparison with the initial value of the momentymg since «/_E +UX) + Eyo

we have assumed that the interaction energy with the medium
is less than the tunneling barri&r Accordingly, one can expand
the momentum difference in eq 2.9 over the energy difference
between initial and intermediate medium states making use of
the momentum definition in eq 2.3

We denote the initial state of the medium [asO0and final
state as|,L[] The matrix element for the tunneling process
accompanied by the transition from the staté€lto the state
|f0can be expressed as

tys = By €Xp(—Sy(70)) B.LIA ,00

Pae = Pio™ g(Ei,a — Ewo) . o
' A=T  exp{— [['dr V(¢ —i(r'~79)}  (2.17)
__Bio
R~ (2.10) Here By is a characteristic preexponent for the semiclassical
tunneling matrix element between right and left electronic states,
Hereu; defines the imaginary speed of tunneling at the segment if the bridge is considered as a perturbation (see, e.g., ref 11).

i. Since the raticAr = Ax/v is the time of tunneling through  Calculation of By is outside of a scope of a semiclassical
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approach. The operatérdescribes the evolution of the medium  of the formalism to the problem of a tunneling electron in a

during tunneling. molecular wire, interacting with a vibrational mode.
Evaluation of the matrix element (2.17) is easier, when the

same basis set is used for initial and final states. The mediumlll. Interaction of a Tunneling Electron with a Vibration

eigenstate,Lat the end of the tunneling path can be expressed Mode

in terms of the corresponding stafje,00Jat the beginning of

the tunneling path using the unitary operator of adiabatic transfer

as

We will apply the results of the previous section to the model
of electron tunneling through a long molecule, connecting two
metal leads under applied bias volt&gehe interacting medium

A modes will be limited, in this example, to a single vibration.
|B,L 0= 115,00 Usually the Fermi levels of metalg are Iocategd within the
BL = HB,OIfrl (2.18) HOMO/LUMO gap of the bridg€ and the energy difference
between the Fermi energy and the lowest unoccupied molecular

For the system without degeneracy, this operator can be definedeVvel forms the tunneling barrier (see Figure*3)The height

through the time ordered exponent of the perturbative interaction Of this barrier differs for different metals and molecules ranging
term: from several e¥? to almost vanishing in carbon nanotut3és®

We consider the barrierA sufficiently large to apply a
semiclassical formalism.
In a symmetric junction, the bias voltage shifts Fermi
A . A . levels of right and left leads bys/2 up and down, respectively.
V(z.t) = exp(Hyt)V(7) exp(—iHyt)  (2.19b)  The applied voltage is considered to be so small that the density
of states at the Fermi levels does not change when the Fermi
Then the tunneling matrix element eq 2.17 within the basis of level is shifted bygs/2. Assume, following the consideration

1= Texp(i [ dt U(zo0) (2.19a)

final medium state$sU= |5,LUis given by of ref 21, that the drop of potential mostly occurs at the interface
between the molecule and metals (see Figure 1). Then the
tys = By exp(—S)(r))llﬁll'I*lT expl — ﬂ)’odr '\7M(r',—i(r'— gjsnnelmg barrier is controlled by the applied voltage and changes
7))} lald(2.20)
é
Elastic tunneling occurs without change of the medium state A(¢g) = A(0) — 75 (3.1)

with the conservation of the index Assuming initial thermal
equilibrium, the elastic tunneling amplitude taking the interaction

with the medium into account becomes Accordingly, the tunneling time eq 1.1 increases with increasing

¢s and the tunneling regime can be changed from fast (1.2) to
. o0 o~ slow (1.3) at sufficiently largepg.
teon= Bo XPCSy() T T exp{ — f“de'Vy (¢',7' ~7)} O Usually, a tight binding Hakel-type model is used to consider
(2.21) the electron transport through molecular wires occurring by
tunneling between separated atomic orbit&id®2124However,
where averaging is done over the Boltzmann distribution of covalent networks of most bridges seem strong enough to

medium states for temperatuTeFOf both elastic and inelastic provide quasi-continuous Charge motion rather than a set of
transfer, one can make use of the Fermi Golden rule and edjumps between discrete poirff?4

2.20 to compute the charge-transfer tunneling Véfg between Generally, the tight-binding model is appropriate when the
initial and final particle states with energy differencewhich overlap of the atomic orbitals is small. The effective mass of
is dissipated to the medium excitations (see, e.g., ref 11). As athe moving charge scales as the inverse tunneling matrix element
result, we get between neighboring orbitals (see, e.g., ref 9) and should be
. large in comparison with the electronic mass if the tight-binding
W(e) = D;taﬁzé(Eﬁ —E, +¢U model is appropriate. However the bare electronic mass can be
used to treat the data of ref 23 for the (§kHmolecular wire.
B2 exp(—2 Accordingly, the continuous media model may be more ap-
— 0 exp(=2%(70) +°°dt AT exp(iI:| t)A « propriate than the tight-binding one for that problem (which is
27 @ fA sensible, since polyalkanes have very large bandwidéhs).
expiH i) (2.22) Note that even for a wide-gap semiconductor such as a DNA

chain, the effective mass of the carrier (hole) seems to be close
Here the Hamiltoniank!; andH; describe the medium properties to the standard electronic mass, which suggests the possible

at the beginning and the end of trajectory, respectively, relevance of a continuous model even th&relhus, the
continuous model can be adequate to treat the electron transport
H, = H,, through the molecular wire.
. . . To simplify the effect of electronvibration interaction, we
H; = Hy + V(7o) (2.23) keep only one significant optic mode. The ability to describe

the most significant aspect of the complex electroibration
The energieE, and E; are the energies of initial and final interaction using a single relevant optical mode has been
Hamiltonian eigenstates and 3, and A was defined by the  suggested by Zerbi et &.In particular, this assumption is
second line in eq 2.17. sufficient to describe the emission spectrum (see discussion in
The exact semiclassical expression for tunneling matrix ref 29 and references therein).
elements, given by egs 2.20 and 2.21 are the main results of The opposite assumption of the significance of acoustic
this section. The rest of the paper is devoted to the application vibrations has been used in ref 12. There it has been motivated
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by the smaller amplitude of vibrations for optic modes than for bridge—acceptor systems, the interaction constant is generally
acoustic ones. However, charge should interact more stronglydifferent at the beginning and the end of the tunnelip@d) =

with the polarized optic mode than with the quasi-neutral 0). Then one can construct the adiabatic operator, taking into
acoustic vibration. Additionally, the dynamic interaction be- account that the change of eigenstates of the medium Hamil-
comes stronger, when the tunneling time equation (1.1) is closertonian equation (3.4) during tunneling can be described as a
to the vibration period. Certainly, the tunneling time of a light shift of the equilibrium position talez). Accordingly, the
electron is closer to the period of optical vibrations than of change of vibrational states during tunneling from the donor to
acoustic vibrations. the acceptor can be represented by the coordinate shift operator

Accurate theory should of course treat all interactions. The as
purpose of this section is to demonstrate the main effect of
vibrations on the tunneling, which is clear within the framework f[(r) — ex;{ 7(@) 9 ) (3.5a)
of the single mode model. The generalization to interaction with Q2
many modes is straightforwaffl. . ) ) )

The characteristic energy of the relevant mode can be TO compute the elastic tunneling amplitude equation (2.20),
estimated akQ ~ 0.2 eV (see, e.g., refs 27 and 28). This mode One needs to e_valuate the tunnellng time dependent interaction
can be, for instance, the most strongly coupledHCor C—C operator equation (2.15). Maklng use of the second quantization
vibrations3! The vibrations can be described by the Hamiltonian representation of the oscillator displaceménive get

A2 a2 9 Il r ' 1
AT 32) ) = 7= ~1@) g + D

Y 2 A
V(@ ,—i(7' 7)) = =y (') u(=i(7'—10)) =
1

wherep and 0 are the momentum and displacement operators
andM is the effective mass of the vibration.

_ ' + _Q(7'—10) + —Q(7'—70)
We take the electronvibration interaction in the standard r(@) ZMQ(b € be )
form, which linearly depends on the displaceménie. N (7o) - vt NS )
N . IT () = exg — ——=0,| = exp — ——(b—-Db")
Vu(?) = —y(7) (3.3) MQ? MQ?V 2

where y(7) is the interaction constant, different at different (3:6)
positions (or tunneling times) of the moving electron. This where operatorbt andb describe the creation or annihilation
approach is standard for the electrarbration interactiorf®-32 of a vibrational excitation. Since for the case of interest
It corresponds to the expansion in the lowest order of the small (molecular wire) eq 3.5 holds, one can ignore the effect of the
vibration amplitudeu. Expressions (2.21) and (2.22) can be adiabatic transfer operator. Then the elastic tunneling amplitude
evaluated analytically for the interaction (3.3), while the problem can be evaluated by making use of the Wick theorem for Bose
becomes more complicated for the bilinear interaction. operator® as

The dependence of the interaction constant on the tunneling 1
timer des_cribes its coordinate_ dependence (seg eq 2..13, shovyingcoh: B, exp(—S,(7)) ex;{m j(‘)ro A (7)) frro dr'’ x
the relation between coordinate and tunneling time). It is

convenient to express the interaction constant through the y(@") (€A + ve) + ,,Qe—Q(f’—f”))]
corresponding reorganization enetgy (oscillator equilibrium
energy change due to the perturbation; see, e.g., refs 1, 2, 7, _ 1 3.7)
and 33) Ve hQ :
expi—=|—1
o1
Er(7) _EMQZ In the static limit for the vibrations = 0), this result is
equivalent to the semiclassical approach of ref 12a.
HUu (U= ueq(t))2 Note that the proposed formalism also allows the exact
MQ — y(Du = —Ex(1) + MQ=———— treatment of a harmonic donebridge-acceptor system, where
the operatofT is of major importance because of reorganization.
U, () :M (3.4) The difference with eq 3.7 is the presence of the additional
ed MQ?2 ’ exponential factors. It can be shown that at low frequency this

contribution dominate$3* At low temperature this donor/
For estimates we will use the reorganization energy typical for acceptor coupling difference reduces the tunneling amplitude
organic moleculestg ~ 0.4 eV17:33 by the Franck-Condon factor exp{y?/(4MQ9)) in exact

When an electron enters or leaves the bridge, its interaction agreement with many previous studies (see, e.g., refs 1, 2, 10,

with the molecular bridge modes almost vanishes and we canll, and 35). This factor represents the overlap integral between
put the initial and final ground states of the vibrational medium

and solvent, which differ by the shift of the oscillator center by

y(0)=1y(ry) =0 (3.5) Ue(To) (eq 3.4). Therefore, the nonorthogonality of medium

states at the beginning and the end of tunneling can reduce the
wherety is the total tunneling time defined in eq 2.16. Since elastic tunneling amplitude and charge transfer rate (denor
the initial and final basis of medium states are the same, the bridge—acceptor systems). In sharp distinction for the molecular
adiabatic operator equation (2.19) is unity and can be omitted wires, initial and final medium vibrational states are the same,
in the definition of the average elastic tunneling amplitude since charge is initially outside of the molecule and finally leaves
equation (2.21). For the case of electron transfer in denor it.



Tunneling of Electrons Interacting with Media J. Phys. Chem. A, Vol. 105, No. 12, 2002657

Returning to the wire situation, for the optical mad® ~ 1000
0.2 eV, so one can neglect the effect of the temperature and set
the population factorqg = 0 at room temperature. Making use
of the boundary conditions eq 3.5, one can expand the interaction
constant in a Fourier series. This gives

[

@) =S 7, sin(”—m)

= Ty

Vibrational enhancement

_2 [m in[nzT
=1 Jodr y(x) sm( ro) (3.8)

If y(7) is positive (or negative) during the whole tunneling path,

then the componenty, with n > 1 will be smaller in
comparison toy1 due to the oscillations of the integral in eq 1
3.8. This can hold for ionic vibrations perpendicular to the 0 2
molecular axes, since negatively charged electrons attract
positive ions and repel negative ions. Therefore, we consider B
the tunneling exponent in eq 3.7 by keeping only one term in
eq 3.8, namely

Y1) =y, sin(f—:) (3.9)

The effect of higher harmonics can also be evaluated analyti-
cally; this does not change the qualitative behavior but makes
the analysis much more complicated.

To describe the effect of interaction, we calculate the
tunneling amplitude eq 2.20 and the average energy of the
tunneling particle along the tunneling path.

Making use of the definition eq 3.9, one can calculate the
tunneling amplitude eq 3.7. As a consequence, we get 1 .

0 2 3
tO,medD B exp(—%(ro)) X

Vibrational enhancement
~
o
-

Bias voltage (V)
Figure 2. Dependence of the vibrational enhanceméied[Bo

Er Qr, 7 \2 1+ exp(=Qry) 1 exp(—Sy(z0)] of the tunneling amplitude on (A) tunneling time and (B)
20 Prey 2 Qr 2 \2 (3.10) applied voltage. The parameters are rectangular barrier of the keight
211+ 7 o 1+ 7 = 3 eV, lengthL = 5 nm, medium mode energgQ = 0.2 eV,
(Qro)2 (Qz,—o)2 reorganization energir = 0.4 eV.
whereEg is the maximum reorganization energy (see eq 3.4) tunneling®!! does not occur for the molecular wire model
in the middle of the tunneling path. because these medium states are the same.

In the slow tunneling regime eq 1.3 the correction to the it follows from eq 3.7 and eq 3.10 that the vibrational
tunneling exponent is proportional to the tunneling time. The ihteraction always enhances the tunneling amplitude. The same

tunneling amplitude (3.10) can be approximated by conclusion follows from a theoretical study of Sumetskiif
the vibrational interaction exists only within the region under
to,meal) Bo €XP(—S(70) + Erty/2) (3.11) the barrier. This enhancement is stronger for slow tunneling eq

(1.3). The dependence of the tunneling enhancement factor on
the tunneling time and applied voltage is shown in Figure 2 for
bridge parameters reasonable for organic molecular wires. As
can be seen from this figure, the enhancement can reach several
orders of magnitude. Note that the transition rate (2.22) scales
as the squared tunneling amplitude, so the observable effect can
- really be strong? If, however, vibrations are assumed to affect

S=%- ﬁ) dr Eg(7) (3.12) only the inelastic processes, the electraibration interaction

can decrease the transition rate, as has been found by Persson

leading exactly to the result eq 3.11. Note that in the limit of and Baratoff® Nevertheless, our results show that the enhance-
the very fast modeQ — o, the correction to the tunneling  ment of tunneling rate due to the electrovibration interaction
exponent in eq 3.12 vanishes @s2. It is understandable that  dominates (cf. eq 3.10), at least in the case where the

The result (3.11) can be interpreted by assuming that the
vibrational mode remains in the ground state during the whole
tunneling path, thus reducing the tunneling barrier by the
reorganization energy equation (3.4). Accordingly, the total
tunneling action should be redefined as

stiff oscillations will not have any effect. semiclassical approach is valid. The latter condition is not
In the fast tunneling regime eq (1.2) the correction to the satisfied in the situation of resonant tunneling studied by Person
tunneling action vanishes ag? 7o%(7?MQ), whenzo — 0. In and Baratoff®

accordance with ref 11 the medium is too slow to follow the  Generally, the current through a molecular wire can be
tunneling electron and remains in the same quantum state duringdescribed in terms of the charge-transfer fatef, eq 2.22. The
the whole process. The reduction of the tunneling amplitude elastic tunneling amplitude provides a reasonable qualitative
due to the difference of the vibrational states before and after understanding of the transport phenometboim particular, at
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low temperature and at low applied voltage the tunneling
transition occurs directly between Fermi levels of right and left
leads and the elastic tunneling amplitude defines the relevant
matrix element for the tunneling proced<etailed studies of
the transfer rate given by (2.22) will be published elsewhere.
The general expression eq 2.15 describes the semiclassica
medium wave function depending on the positign< L
(tunneling timer < 7o passed from the beginning of the process).
This wave function contains detailed information about the
medium state and therefore how the medium assists tunneling.
Below we calculate this function for the single mode problem
under consideration and study mean energies for the medium®
and tunneling particles, to describe the energy redistribution
during tunneling. Initially, the medium is in the ground state.
Then, according to eq 2.15, the medium wave function corre- ‘
sponding to the tunneling timecan be expressed as 055 0.5 1

Relative position /L = /1,

ffective tunneling barfier (eV)

M7= Figure 3. Dependence of the tunneling barrier reduction on the position
TN of the electron under the rectangular barrier for fast (solid line),
Texpl jr;dt Vu(#',7=)} 00 intermediate (dashed line) and slow (daslotted line) tunneling

P N P regimes. The tunneling barrier and the applied voltage are taken to be
\/E(D\(T exp{— L dr 'V (@' 7' =1)}) T exp{ —L de' V(7' 7' =)} 100 A =2eVand 2V, respectively. Values of other parameters are given

(3.13) in the text.

Here |00is the ground state of the vibrational mode and the sharp turn-on of the tunneling barrier. For smoother behavior
operatoVy, is defined by eq 3.6. Since operators A and B with  of the coupling constant the shift in tunneling barrier will follow

a constant commutator satisfy the equalitygfe= eBerdA B, the reorganization energy much more closely.
while the ground state has the propdsf@(= 0, the expression
for the wave function (3.13) can be rewritten as IV. Conclusions and Discussion
2 We have constructed the semiclassical wave function for a
IM, = ex;{— UAQ) + r](r)b+)|0D tunneling electron interacting with the medium. This wave
’ 2 function permits us to describe the evolution of the medium
1 degrees of freedom caused by the tunneling electron.
D)=~ A/ 5010 Jodr (@) e Semiclassical expressions for matrix elements coupling initial
and final states equation (2.17) and for the medium evolution
E 1 during tunneling look similar to the standard real time expression

= - \/E—Z[L(COE(JT_T) — egf) — for the evolution of the medium eigenstate. However, this
Q 1+ (Qﬂ ) Qr, To similarity is not complete: Direct change from real time to
)

imaginary does not lead to our results. Perhaps it is possible to

. [nT suggest an easier alternative derivation (and improvement) of
sm(r—o)] (3.14) our result based on the imaginary time approach to the tunneling
problem. To our knowledge this has not been done yet. Using

The above result enables us to express the mean energyhe semiclassical matrix elements for medium transitions, we
change of the vibrational mode during tunneling as obtained the charge-transfer rate, for the processes, accompanied
by the energy exchange with the media (dissipation).

The case of tunneling through a molecular wire has been
considered in detail. The model of dynamic interaction of the
tunneling electron with a single vibrational mode has been used.
Equation 3.15, in turn, defines the change of the tunneling barrier We have calculated the medium effect on the elastic tunneling
due to the dynamic medium response. Straightforward calcula-amplitude. As opposed to the donor/acceptor charge tr&risfer

a2 ~2
AE,(7) = m/l,r|2p—M + MQZ“E — (@)t — hQ/2IM,70 (3.15)

tion with the wave function defined by eq 3.14 yields or spin-boson problefd where vibronic descriptions of initial
and final states differ, here the interaction with bridge vibrations
1 enhances charge tunneli#fgOur analysis shows that the most

AE,() = hQn(2)|” = 2y(7) wo(@  (3.16) significant vibrational effect occurs in the slow tunneling regime,
when the tunneling time exceeds the vibrational period (eq 1.2).
The tunneling barrier change with time is shown in Figure 3 In this regime the tunneling barrier can be substantially reduced,
for slow and fast tunneling regimes. The results are in good and the tunneling rate can increase by several orders of
agreement with the numerical study of refs 16 and 18. For the magnitude. The reduction of the tunneling barrier has been
fast tunneling regime wher@1z, = 0.1, changes in energy are identified as the bridge reorganization energy. This is the
very weak since the vibration does not have enough time to adiabatic change of medium energy, when it follows the
respond to the tunneling charge (the electron is never localizedtunneling electron. Our results qualitatively reproduced the
on the bridge). In the slow tunneling regime and §&r, = 10, numerical studies of refs 16 and 18.
the energy barrier clearly follows the reorganization energy. The medium wave function has been derived. The slow
Some deviation can be understood as the effect of a nonadiabati¢unneling regime is shown to represent the polaron cloud that
switch on the interaction at= 0, because eq 3.9 suggests the adiabatically follows the tunneling electron. This case can then
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be addressed as thgwlaron tunneling regime in accordance
with the suggestion of ref 18. In the opposite case of fast
tunneling, the medium excitations cannot follow the tunneling
electron. This case corresponds to tiperexchangeegime

of independent particle tunneliig.

Our results can be applied to more general problems than

the modeling study of section Ill. Straightforward generalization
of the analytical expressions for the tunneling amplitude and

the charge-transfer rate can also be made for the linear

interaction with an arbitrary number of vibrations. Generalization
can be made for the bilinear electrevibration interaction. The
expression for tunneling rate permits the direct analysis of the
energy dissipation occurring during tunnelitfgn addition to
vibrations, the interaction of tunneling electrons with conduction
electrons and the corresponding electronic friction effect for
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